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A high-generalizability machine learning framework for
predicting the progression of Alzheimer’s disease using
limited data
Caihua Wang 1✉, Yuanzhong Li 1✉, Yukihiro Tsuboshita1, Takuya Sakurai 1, Tsubasa Goto 1, Hiroyuki Yamaguchi 2,3,
Yuichi Yamashita 2, Atsushi Sekiguchi4, Hisateru Tachimori 5,6 and for the Alzheimer’s Disease Neuroimaging Initiative*

Alzheimer’s disease is a neurodegenerative disease that imposes a substantial financial burden on society. A number of machine
learning studies have been conducted to predict the speed of its progression, which varies widely among different individuals, for
recruiting fast progressors in future clinical trials. However, because the data in this field are very limited, two problems have yet to be
solved: the first is that models built on limited data tend to induce overfitting and have low generalizability, and the second is that no
cross-cohort evaluations have been done. Here, to suppress the overfitting caused by limited data, we propose a hybrid machine
learning framework consisting of multiple convolutional neural networks that automatically extract image features from the point of
view of brain segments, which are relevant to cognitive decline according to clinical findings, and a linear support vector classifier that
uses extracted image features together with non-image information to make robust final predictions. The experimental results
indicate that our model achieves superior performance (accuracy: 0.88, area under the curve [AUC]: 0.95) compared with other state-
of-the-art methods. Moreover, our framework demonstrates high generalizability as a result of evaluations using a completely different
cohort dataset (accuracy: 0.84, AUC: 0.91) collected from a different population than that used for training.
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INTRODUCTION
Alzheimer’s disease (AD) is a progressive disorder that causes
brain cells to degenerate, and its symptoms, such as memory
impairment, greatly impact the activities of daily living of affected
patients. As of 2019, there were an estimated 5.8 million patients
with AD, and this number is expected to grow to 13.8 million by
2050 in the USA alone1. On the other hand, AD has few available
treatments, and there has been a high rate of failure in AD drug
development programs2. New drug development remains chal-
lenging, and a large number of such drugs aim to slow the
progress of AD at an early stage3. Participants with mild cognitive
impairment (MCI) who are considered to be in the prodromal
stage of AD are generally involved in clinical trials. For such trials, it
is important to recruit participants with MCI who are likely to
progress to AD, because only 20% of patients with MCI are
subsequently diagnosed with AD within 1.5–2 years, while the
other 80% remain unchanged or even revert to normal4,5.
Therefore, an algorithm that can classify stable MCI (sMCI) and
progressive MCI (pMCI) is needed to indicate that a patient with
MCI will progress to AD within a certain period.
Various machine learning models for predicting the progress of

AD have been proposed, and the most frequently utilized dataset,
which includes brain images and cognitive test scores, is from the
North American Alzheimer’s Disease Neuroimaging Initiative6 (NA-
ADNI). Among these models, some7–10 use only brain images as
input; the others11–17 use multimodal information including not
only images but also cognitive scores. A summary of related works
is provided in Supplementary Table 1, which shows that while

some image-based methods have adopted an end-to-end
approach, that is, using voxel-level images as inputs, almost all
methods based on both image and clinical information use image
features, such as hippocampus volumes, extracted by their own or
existing open-source tools. Because most of these models are
implemented using deep learning, which requires training of a
considerable number of parameters, a large number of training
samples is desirable to achieve good generalization perfor-
mance18. Even though the classification accuracies of sMCI and
pMCI have reached 75% to 86%, two problems have yet to be
solved. The first problem is that the limited data in the NA-ADNI
tend to induce overfitting. Compared with ChestX-ray19 and
ImageNet20, which include samples from tens of thousands to
millions of patients and objects, the NA-ADNI contains only about
1000 patients with MCI. The second problem is that, because of
the participants’ biases, the actual ability of an artificial
intelligence (AI) model trained and evaluated based on the NA-
ADNI needs to be tested on a completely different dataset. One of
the important biases is that the NA-ADNI participants are primarily
enrolled in Caucasian populations21. Because differences in
cortical structure have been reported between Caucasian and
East Asian adults22, the performance of AI prediction models
trained using the NA-ADNI should be examined using other cohort
datasets. To the best of our knowledge, no such evaluations using
cross-cohort datasets have been conducted.
The present study focuses on solving the above two problems

based on information that can easily be obtained with relatively low
invasiveness and cost, such as magnetic resonance imaging (MRI)
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images, which are used as brain imaging biomarkers; information
such as positron emission tomography (PET) images is not adopted.
Here, we propose a hybrid machine learning framework (Fig. 1)

that consists of an image feature extraction part (IFEP) that
automatically extracts image features from predefined brain sub-
regions related to cognitive decline, and an AD progression
prediction part (APPP), which predicts whether a patient with MCI
will convert to AD using extracted image features combined with
clinical information. In the IFEP, a convolutional neural network
(CNN)23, which is a powerful tool used to extract features from
images automatically24, was applied. In the APPP, a linear support
vector machine (SVM) classifier was used to make the final
predictions. In the IFEP, to suppress the overfitting of deep learning,
we introduced prior brain imaging studies25–27 to use selected brain
segments that have high correlations with cognitive decline to
reduce the input image dimensions. To improve the performance
and generalizability of our CNNs, mechanisms such as data
augmentation28, dropout18, self-attention (SA)29, and auto-encoding
(AE)30,31 were also used. A linear SVM tends to have higher
generalizability compared with nonlinear classifiers32, and using it
as a classifier for the image features extracted by CNNs has been
shown to be effective for classification33. Therefore, in the APPP, we
selected it for the final predictions using both the image features
extracted in the IFEP and the non-image information, including
cognitive scores, age, and genetic apolipoprotein E (APOE) types.
The contribution of this study is that we investigated a hybrid

approach consisting of a deep CNN for automatic image feature
extraction from cognitive decline-related segments and a linear
SVM for final prediction using both automatically extracted image
features and non-image information to tackle the problem of
predicting MCI progress, which has traditionally been difficult in
machine learning because of the lack of sufficient training data.
Our study also showed that such a hybrid approach could achieve
prediction accuracies of 88% (area under the curve [AUC]: 95%) for
the NA-ADNI and 84% (AUC: 91%) for the J-ADNI, thereby
outperforming previous works. The most important point of our
study is that such a hybrid approach can be more practically

applicable for predicting the progress of MCI because of its high
generalizability for different cohorts.

RESULTS
Training, validation, and test settings
The training, validation, and test datasets are shown in Fig. 2.
Repeated 10-fold stratified cross-validation and test was adopted for
evaluation of our model on the NA-ADNI dataset, and test was only
carried out on the J-ADNI dataset that was completely unknown to
the model. In the tenfold stratified cross-validation and test, the
whole dataset was randomly split and stratified by class labels into
10 subsets. In each cross-validation and test, eight subsets were
used for training; the remaining two were used for validation and
test, respectively. The cross-validation and test were repeated 10
times by shifting the start subset of cross-validation and test setting
to the next subset, so that each sample of all the datasets was used
for test only once. The mean accuracy for all test subsets was
calculated to evaluate our model in regard to the NA-ADNI dataset.
For the evaluation of the J-ADNI dataset, the 10 models obtained in
the above repeated 10-fold cross-validation and test were used, and
the mean output probabilities of the models were used to classify
each patient as sMCI or pMCI with a fixed threshold of 0.5.

Comparison with previous studies
A comparison of our results with those from previous studies is
shown in Table 1. Because the same NA-ADNI dataset was used,
the prediction performance was basically comparable, despite
differences such as the follow-up periods used to define sMCI and
pMCI, input information, and evaluation methods (validation,
k-fold cross-validation, and k-fold cross-validation and test). For
the case of using only brain images as input, our model (M2 in
Supplementary Table 2), based on only T1-weighted MRI images
(accuracy: 78%, AUC: 85%, sensitivity: 78%, specificity: 78%),
performed better than a previous deep neural network (DNN)8

(accuracy: 75%, AUC: not available [NA], sensitivity: 75%,
specificity: 75%), equivalent to a DNN9 that used a much easier

Fig. 1 A machine learning framework for predicting the progression of Alzheimer’s disease. Multiple CNN-based image feature extractors
with the same structure were trained on each brain segment, that is, the hippocampus and anterior temporal lobe in our study, to extract
image features automatically. The CNN-based image feature extractor consists of a multi-layer convolutional neural network (CNN) block, a
self-attention (SA) block, and an auto-encoder (AE) block. The feature vectors after the global average pooling (GAP) layer that encodes image
features are passed to the PCA for dimensionality reduction. Finally, a linear SVM uses the low dimensional image features together with non-
image information to make a final prediction.
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task definition (accuracy: 79%, AUC: NA, sensitivity: 75%,
specificity: 82%), but was inferior to a DNN7 using MRI and PET
images (accuracy: 83%, AUC: NA, sensitivity: 80%, specificity: 84%)
and a DNN10 using mixed groups of cognitively normal (CN)+
sMCI and pSMI+AD groups for training (accuracy: 83%, AUC: 88%,
sensitivity: 76%, specificity: 87%). For the case of using not only
images, but also non-image information, the performance of our
model (M5 in Supplementary Table 2) (accuracy: 88%, AUC: 95%,
sensitivity: 88%, specificity: 88%) was better than that of state-of-
the-art models using SVM13, DNN16, and random forest17

(accuracy: 85%–87%, AUC: 87%–90%). Considering that the
state-of-the-art methods were evaluated only by validation
datasets (not test datasets), the potential superiority of our model
should be greater (see Supplementary Table 6). The experimental
results indicated that our framework outperformed previous
models and worked well on cross-cohort datasets, as shown in
Table 1 and Fig. 3.

Cross-cohort evaluation results
Because only the NA-ADNI dataset obtained primarily using
Caucasian populations was used for training our AI model, a non-
Caucasian dataset was preferred for testing cross-cohort perfor-
mance. The J-ADNI34 is a multicenter, longitudinal observational
study in Japan using an almost identical protocol to the NA-ADNI.
As a result, J-ADNI participants are East Asian. By using J-ADNI as
the test dataset, we evaluated the cross-cohort performance of
our AI model. The receiver operating characteristic (ROC) curve
evaluated using the J-ADNI is shown in Fig. 3, and the ROC curve
of the NA-ADNI is also shown as a reference. The M5 model
(Supplementary Table 2) was used in both cases. Although the
AUC of the J-ADNI was 0.91 and 4% lower than the NA-ADNI, the
performance (Supplementary Table 3) was still comparable to
those in the previous studies shown in Table 1, where the NA-
ADNI was used as both a training and test dataset.

Fig. 2 Training, validation, and test datasets.We extracted data for training, validation, and test from the longitudinal datasets ADNI1, ADNI-
GO, and ADNI2. If a participant was diagnosed as MCI and both the MRI T1-weighted images and other non-image information used in our
model were available, we selected the related data as a candidate for this study. We evaluated our model in the following two ways: first, as in
previous studies, we tested the model trained based on the NA-ADNI dataset using repeated 10-fold cross-validation and test; in each
iteration, 80% of the samples were used for training, 10% for validation, and 10% for test; second, to evaluate generalization across cohorts,
we tested the model, which was trained based on the ADNI dataset using a totally “unknown” J-ADNI dataset.

Table 1. Comparison with previous studies.

Method Dataset Input Period Accuracy AUC Sensitivity Specificity

DNN [7] NA-ADNI MRI, FDG-PET 3 years 0.83 – 0.80 0.84

DNN [8] NA-ADNIa MRI 3 years 0.75 – 0.75 0.75

DNN [9] NA-ADNI MRI 1.5 yearsb 0.79 – 0.75 0.82

DNN [10] NA-ADNI MRI 3 years 0.83c 0.88c 0.76c 0.87c

SVM [11] NA-ADNI MRI, Cognitive scores 3 years 0.85 – 0.47 0.97

Random forest[12] NA-ADNI MRI, gender, age 1 year 0.79 – 0.82 0.74

SVM [13] NA-ADNI MRI, MMSE 3 yearsb 0.85d 0.90d 0.84d 0.88d

DNN [14] NA-ADNIa MRI, Cognitive scores, age Series – 0.76 – –

DNN [15] NA-ADNI MRI, Cognitive scores, CSF, demographics 1 year 0.81 – 0.84 0.80

DNN [16] NA-ADNI MRI, Cognitive scores, APOE, gender, age 1 year 0.86e – 0.82e 0.88e

Random forest[17] NA-ADNI MRI, PET, Cognitive scores, APOE 3 years 0.87 f 0.87 f 0.86 f –

Proposed (M2) NA-ADNI MRI 2 years 0.78 0.85 0.78 0.78

Proposed (M5) NA-ADNI MRI, Cognitive scores, APOE, age 2 years 0.88 0.95 0.88 0.88

aRelatively small datasets compared with the NA-ADNI were also used for both training and evaluation.
bFollow-up periods used for sMCI are longer than that of pMCI (5 years in DNN [9] and 4 years in SVM [13]).
cTrained with mixed groups of NC+sMCI and pSMI+AD.
dtwofold validation accuracy.
eTenfold cross-validation accuracy.
fTenfold cross-validation accuracy, much higher accuracy of 91% on a small hold out test set.
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Visualization of our framework
First, to investigate which region the CNNs focused on in the IFEP,
SmoothGrad35 visualization was used. As shown in Supplementary
Table 2, the performances using brain segments (M2 andM5) were
better than that using the whole brain (M1 and M4). The reason for
this is shown in Fig. 4, where red represents a higher contribution
ratio and blue represents a lower contribution ratio. The samples
from S1 to S4 were selected from Fig. 5. Figure 4a shows that, even
though M1 and M4 (Supplementary Table 2) focuses on the
hippocampi and amygdalae, which play major roles in learning and
memory, the variance of the “red” locations is quite large. On the
other hand, as shown in Fig. 4b, M2 and M5 (Supplementary Table
1), which are based on brain segments, consistently focus on the
hippocampi and amygdalae compared with the whole brain.
Second, to investigate the effectiveness of the features

extracted by our model (M5 in Supplementary Table 2), both
the image and non-image features of the training samples were
projected onto a two-dimensional (2D) space using UMAP36

(Fig. 5). Because we wanted to see the global structure in the
features, the value of the parameter “n_neighbors” was set to 50,
which is bigger than the default value of 15. The input for UMAP
involves 10-dimensional features obtained just after the “Quantile
normalization” shown in Fig. 1. The 10 dimensions consist of four
from the hippocampi and anterior temporal lobes (left and right),
four from different cognitive scores, one from age, and one from
APOE type. A blue “•” represents sMCI, which was correctly
classified as sMCI by our model, and a blue “x” represents sMCI,
which was wrongly classified as pMCI. A red “•” represents pMCI,
which was correctly classified as pMCI, and a red “x” represents
pMCI, which was wrongly classified as sMCI. Despite a small
number of misclassification errors, most training samples were
appropriately distributed, which suggests that effective features
for classifying sMCI and pMCI were extracted successfully, and that
a linear SVM is appropriate for classification tasks.

DISCUSSION
One main challenge of this study is how to extract meaningful
features from images effectively by using a CNN with a limited
number of training samples. CNNs are considered a powerful
method that can automatically extract more effective features
from images than manually designed. To realize this, CNNs require
a huge dataset for training a large number of parameters.
However, in the present study, while the number of available
samples was relatively small (in the hundreds), the dimension of
input images for each sample is huge (millions of voxels). In this

case, a CNN can easily find a local optimal solution for its
parameters. As a result, trained CNN models with local optimal
solutions tend to lack the generalization of unknown datasets.
To extract robust image features from limited data, we introduced

prior knowledge of brain imaging studies that investigated the
correlation between brain segments and the progression of AD. In
the IFEP, instead of one CNN for the whole brain, multiple CNNs
were trained for different brain segments cropped from the whole
brain images. Hippocampi and anterior temporal lobes (left and
right) were finally selected experimentally. By adopting the brain
segments, the dimension of input images for each sample was
reduced to less than one-tenth of the whole brain. Moreover, each
CNN was forced to learn image features from only the regions that
were highly correlated with the progression of AD. The gradient
maps shown in Fig. 4 demonstrate that the image features extracted
by the CNNs of the cropped segments focus on more meaningful
regions, such as hippocampi and amygdalae, compared with the
whole brain. In our experiment, as shown in Supplementary Table 2,
adding image features extracted from the whole brain (M4)
improved the accuracy of only using non-image information (M0)
by 2%, and using image segments (M5) instead of the whole brain
improved the accuracy further by 1%.
The other challenge is what kind of classifier should be used to

make a final prediction based on not only the features extracted in
the IFEP but also the non-image information, including cognitive
scores, age, and genetic APOE type. As described previously, the
visualized feature distribution of sMCI and pMCI shown in Fig. 5
suggested that a linear classifier was appropriate. In the APPP, to
restrain the overfitting induced by the limited data, instead of an E2E
deep neural network, a linear SVM32, which tends to have higher
generalizability, was selected. The experimental results, in which the
SVM model (M5, Supplementary Table 2) achieved 5% higher
prediction accuracy than did the E2E model (M3, Supplementary
Table 2), demonstrated the effectiveness of introducing the SVM.
In addition, our framework selected information that is relatively

easy to be obtained as input. For example, even though PET imaging
and cerebrospinal fluid (CSF) examinations are very useful for AD
diagnosis, they were not selected because of their high cost and
invasiveness. Furthermore, because the total processing time for
predicting one case is about 30 seconds on a CPU-based PC, the
hurdle to integrate our AI model into a practical clinical trial is low.
Successful and failure cases selected from the same UMAP

visualization as that in Fig. 5 are shown in Supplementary Fig. 1.
The “score” with a range from 0.0–1.0 is the output of the SVM;
“0.0” and “1.0” represent the highest probability of sMCI and pMCI,
respectively. The threshold for classification is 0.5. The samples
S1–S6 shown in Supplementary Fig. 1a were selected from the
cluster of sMCI samples, the boundary between the sMCI and
pMCI clusters, and the cluster of pMCI samples.
S1 and S5 were selected from the cluster of sMCI samples. S1 is an

sMCI case and was correctly classified as sMCI with a very low score
of 0.15. S5 is a pMCI case and was classified wrongly as sMCI with a
very low score of 0.09. Hippocampus atrophies of S5 are somewhat
more progressive than S1, and cognitive scores are also slightly
worse. However, because the score of S5 is lower than S1, our AI
model shows that S5 has a lower probability to progress to AD. Note
that the older population tends to have more progressive
degradation of both hippocampus atrophies and cognitive scores
caused by normal aging. The lower score of S5 might be affected by
the fact that the age of S5 is 15 years older than that of S1.
S2 and S3 were selected from the boundary between the sMCI

and pMCI clusters. S2 is an sMCI case and was classified correctly
as sMCI with a low score of 0.30. S3 is a pMCI case and was
classified correctly as pMCI with a score of 0.55, which is slightly
higher than 0.5. Hippocampus atrophies of both S2 and S3 were
unremarkable. On the other hand, the cognitive scores of S3 were
slightly worse than those of S2. The difference in cognitive scores
might have caused the different classification results.

Fig. 3 Cross-cohort evaluation results. ROC curves for both the NA-
ADNI and J-ADNI are shown. The AUCs of the NA-ADNI and J-ADNI
are 0.95 and 0.91, respectively.
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S4 and S6 were selected from the cluster of pMCI samples. S4 is
a pMCI case and was classified correctly as pMCI with an extremely
high score of 0.95. S6 is an sMCI case and was classified wrongly as
pMCI, also with a high score of 0.97. Regarding hippocampus
atrophy, S4 is a little progressive and S6 is very progressive.
Regarding cognitive scores, both are poor. Both the obvious

hippocampus atrophy and the poor cognitive scores indicate the
reason S6 was misclassified as pMCI.
The strength of deep learning models, but also one of their

vulnerabilities, is the ability to discern patterns in training data
that humans cannot37. Sometimes, the vulnerability is striking,
especially where there are biases in the training dataset. For

Fig. 4 Gradient maps of CNNs. a Gradient maps of CNNs of the whole brain. CNN visualization results of M1 (Supplementary Table 2) based
on the whole brain. Red represents a high contribution ratio, and blue represents a low contribution ratio. b Gradient maps of CNNs of brain
segments. CNN visualization results of M2 (Supplementary Table 2) based on brain segments. Red represents a high contribution ratio, and
blue represents a low contribution ratio. Compared with the whole brain, the CNNs based on brain segments consistently focused on the
hippocampi and amygdalae.

C. Wang et al.
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example, unintended effects caused by cohort (North America and
East Asia) and gender biases have been reported in gender
recognition systems38. As mentioned previously, because our AI
model was trained based on the NA-ADNI dataset, which has a
relatively small number of samples, mainly Caucasian, it is
necessary to evaluate the trained model using a completely
different dataset. In the present study, we evaluated its
performance using the J-ADNI dataset, which consists of East
Asian samples and was totally unknown to our AI model. Figure 3
shows that the performance of M5 (Supplementary Table 2) using
the J-ADNI. Furthermore, as shown in Table 1 and Supplementary
Table 3, the prediction accuracy using the J-ADNI was 84% and
comparable to previous studies that used the NA-ADNI as both the
training and test datasets. The high performance shows the
potential of our AI model to be incorporated in a practical clinical
trial. A previous SVM study13 (Table 1) also used the J-ADNI dataset
for evaluation of their model trained on an NA-ADNI dataset, but
the evaluation was only carried out for CN and pMCI subjects
(accuracy: 91%, AUC: 97%), because their definition of sMCI
required a follow-up period of over 4 years, but the longest follow-
up period in the J-ADNI is 3 years.
Supplementary Table 4 shows the results of an ablation study of

neural network architecture (that is, DenseNet with and without
SA and AE). AE contributed the most in the NA-ADNI dataset,
whereas SA contributed the most in the J-ADNI dataset. The final
DenseNet model with both SA and AE showed stable performance
for both the NA-ADNI and J-ADNI datasets.
Supplementary Table 5 shows the performance of an alternative

model in which SVM linear kernel was replaced by radial basis
function kernel. Compared with Supplementary Table 4, the two
models were nearly equivalent, except that the AUCs of the linear
model were slightly better, implying that the linear SVM is preferable.
Generally, an end-to-end deep learning classification mode often

suffers from overfitting when the dataset is small, and replacing
classification layers in the end-to-end model with a linear SVM can
improve its robustness against overfitting. We investigated the
difference in accuracies between the validation dataset, which was
used to select the best parameters for a model, and the test
dataset, to which the selected model was applied. The lower
difference of the two accuracies suggests higher model

generalizability. Supplementary Table 6 shows that the accuracy
difference between the validation and test of hybrid model (M5)
was much smaller than that of the end-to-end model (M3). A
similar tendency was also seen in the models using images only
(M2 and M6). Supplementary Table 6 also shows that the accuracy
varied widely among the randomly split validation and test subsets
because the dataset was relatively small. This strongly implies the
existence of bias when a small, randomly-selected evaluation
subset is used, and repeated 10-fold stratified cross-validation and
test is desirable to evaluate a developed model objectively.
The first limitation of this study is that, even though the ADNI

dataset, which is the largest worldwide regarding AD, was used in
this study, the size was still relatively small. Therefore, we
proposed the hybrid model to suppress overfitting.
The second limitation is that, because we aimed at contributing

to clinical trials, only the baseline data were used as input. To
extend its application to common clinical diagnoses, where
longitudinal data are usually available, there is room for
improvement by utilizing not only the baseline data, but also
the whole longitudinal data.
The third limitation is that our hybrid model showed superiority

to end-to-end models using DenseNet as a backbone when the
available dataset was limited. However, end-to-end models,
including those using other state-of-the-art architectures such as
vision transformer39 as backbones, should be continuously
investigated, because projects like the ADNI are ongoing and
datasets will become larger.
In this paper, we proposed a hybrid machine learning frame-

work to overcome the lack of training samples in the field of AD
progression prediction. The experimental results showed that it
worked well, even on different cohorts. Utilizing this framework to
stratify patients with MCI who have higher risk of progression to
AD might improve the success rate in future clinical trials of drugs
for treating AD. To achieve this goal, the most important future
tasks are to conduct retrospective evaluations based on previous
trial data involving drug efficacy and to demonstrate the benefits
of integrating AI quantitatively. In addition, as recent studies have
shown that new biomarkers such as plasma phospho-tau are also
effective for prediction40, it is necessary to consider adding these
biomarkers to input in future models.

Fig. 5 Visualization by UMAP (10) 2 dimensions). Training samples were plotted after the dimensions of their image and non-image
features were reduced to 2 by using UMAP. Blue dots represent sMCIs that were correctly classified as sMCIs by our model, and blue “xs”
represent sMCIs that were incorrectly classified as pMCIs. Red dots represent pMCIs that were correctly classified as pMCIs by our model, and
red “xs” represent pMCIs that were classified incorrectly as sMCIs. Samples S1 to S4 were selected for CNN visualization in Fig. 4.
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METHODS
Datasets used in the study
The data used for training, cross-validation, and test in our study were
obtained from the ADNI1, ADNI-GO, and ADNI2 datasets in the NA-ADNI
database (http://adni.loni.usc.edu/ADNI). The NA-ADNI is a cohort study
launched in 2003 as a public–private partnership, led by principal investigator
Michael W. Weiner M.D., and carried out across 55 research centers in the USA
and Canada. The clinical coordination center of NA-ADNI established a
network of clinical sites and developed a plan for the recruitment and
retention of subjects, and furthermore prepared the final clinical protocol and
informed consent, which is distributed to the sites for local institutional review
board (IRB) approval6, Subjects were willing and able to undergo test
procedures, including neuroimaging and follow-up, and written informed
consent was obtained from participants17. Over 2000 participants with normal
cognition and patients with MCI or AD were recruited for the present study.
The first cohort, referred to as ADNI-1, consists of 800 individuals: 200 CN
individuals, 400 with late MCI, and 200 with mild dementia. ADNI-GO, the
second cohort, included about 200 additional individuals with early MCI. In
ADNI-2, more participants at different stages of AD were recruited to monitor
the progression of AD. ADNI-3, which is presently enrolling additional CN
individuals and patients with MCI and dementia, was not included in our
study, because no diagnosis information is currently available.
Longitudinal data for each participant were examined, and the samples

used in our study were selected as follows. From the longitudinal data, we
first identified candidate baseline points at which the participant was
diagnosed as having MCI and both T1-weighted MRI images and other
non-image information used in our model were available. The non-image
information includes cognitive test scores on the Mini-Mental State
Examination (MMSE), Functional Activities Questionnaire (FAQ), Clinical
Dementia Rating (CDR) Sum of Boxes score, and Alzheimer’s Disease
Assessment Scale Cog-11 (ADAS), APOE type, and demographic informa-
tion, such as gender and age. If the participant progressed to AD within 2
years from the baseline point, we labeled that participant, in association
with the T1-weighted MRI images and non-image information at baseline,
as a pMCI sample; otherwise, as an sMCI sample. There were 399 sMCI and
430 pMCI samples extracted for the training, validation, and test of our
prediction model in this experiment.
The same procedure was applied to the J-ADNI dataset, which was

collected at the 38 participating clinical sites using the same protocol as that
for the ADNI, but from population of East Asian adults and in a shorter period
(3 years). Approval for the J-ADNI study protocol was obtained from the local
ethics committees or institutional review committees at the 38 participating
clinical sites, including the principal investigator’s site (The University of
Tokyo). Informed written consent was obtained from all the participants at
each clinical site21. In total, 80 stable and 118 progressive MCI samples were
extracted from the J-ADNI dataset for the evaluation of our trained model.
Detailed information of the NA-ADNI and J-ADNI datasets is shown in

Supplementary Table 7.

Image shape normalization
The 3D T1-weighted MRI images used in our study were first transformed into
Montreal Neurological Institute (MNI)41 space by aligning T1-weighted MRI
images to atlas images (standard images) created in MNI space. The template
images of the MNI152 NLIN 2009a atlas42 were used. To align robustly and
accurately T1-weighted MRI images, which were obtained under protocols
used in NA-ADNI or J-ADNI studies, to the template images of the atlas, which
were created in MNI space, a coarse-to-fine approach containing landmark-
based and image registration-based alignment steps was developed.
In the landmark-based alignment step, six locations in the brain with

distinct local anatomic structures were selected as landmarks to be used for
robustly aligning T1-weighted MRI images to the atlas template images.
Landmarks specified manually for the atlas template images are shown in
Extended Fig. 2. These landmarks are the left and right eyes, body of fornix
(front), midbrain (center), 4th ventricle (center), and corpus callosum (top). A
region-based CNN (R-CNN)43 was trained to detect the same landmarks from
the T1-weighted MRI images. We trained the R-CNN with 290 cases collected
from multiple datasets, including the NA-ADNI dataset, OASIS Brains dataset44,
and locally obtained data. Landmarks of training images were specified
manually under the supervision of a radiological technologist.
When landmarks of T1-weighted MRI images were detected by the

trained R-CNN, we set the center point of each landmark detected from
each T1-weighted MRI image to correspond with that of the same
landmark manually specified in the atlas template image. Using six pairs of
corresponding central points of the landmarks in the T1-weighted MRI and

atlas template images, we identified a linear transform, including 3D
rotation, translation, and scaling, by minimizing the total error between the
transformed central points of the landmarks detected from the T1-
weighted MRI images and that of the atlas template images as follows:

X6
i¼1

kQi � ðSRPi þ TÞk !yields min (1)

where Pi and Qi are the central points of the ith landmark in the atlas
template and T1-weighted MRI images, respectively. S, R, and T denote 3D
scaling, rotation, and translation, respectively. We used a linear transform
with 9 degrees of freedom, called a similarity transform, instead of an
affine transform because we only wanted to normalize the location,
orientation, and size of the T1-weighted MRI images, not change the
internal detail anatomic structures.
In the image registration-based alignment step, the initial similarity

transform obtained from the landmark-based alignment was further refined
by using an image registration technique that utilizes mutual information as
an image similarity metric45–47. In this study, a brain mask of the atlas
template images, which is available together with the atlas, was also used to
ensure that the image registration was only performed on the brain region.
The image registration technique used in this study was implemented based
on the open-source Insight Tool Kit (ITK) image registration framework48.

Image intensity normalization
As T1-weighted MRI images acquired in different sites with different
equipment may have different biases in terms of intensity distribution, the
normalization of image intensity is an important pre-procession for many
image analysis tasks, and many methods have been proposed in the
past49–52. In the present study, we adopted a similar example-based
intensity normalization approach that uses patches in the T1-weighted MRI
images and atlas template images, which contain patches of the acquired
and tissue contrasts desired50, but implemented it in a simpler way for
robustness and computational simplicity.
Supplementary Fig. 3 shows an outline of our image intensity

normalization algorithm. Using the similarity transform obtained above,
the T1-weighted MRI images were transformed to shape-normalized
images to align to the atlas template images. Then, an augmented
example-based image intensity normalization was applied to the shape-
normalized images, the details of which are described below.
To ensure that the corresponding patches in the shape-normalized and

atlas template images used for intensity normalization contained the same
tissue, we performed nonlinear image registration between the shape-
normalized and atlas template images. Nonlinear image registration was
also implemented based on ITK48, and used mutual information as the
image similarity metric and B-spline as the image transform47. Similar to
what was done in the shape normalization, the brain mask of the atlas
template image was also used to ensure that the nonlinear image
registration was only performed on brain regions.
Using the B-spline transform obtained in the nonlinear registration, the

shape-normalized images were transformed nonlinearly to the atlas
template images, called the warped images, as follows:

Iw Xð Þ ¼ InðTB X;φð ÞÞ (2)

where In and Iw denote the shape-normalized and warped images,
respectively, and TB X;φð Þ is the B-spline transform between the shape-
normalized and atlas template images with parameters of φ.
In the warped images Iw , tissues in the normalized image In were

nonlinearly deformed to align to those in the atlas template images. Using
the brain mask of the atlas template images, we calculated the minimal
box that contained the brain region, and divided the minimal boxes of
both warped images Iw and atlas template images Ia into 8 × 8 × 8 blocks.
For each pair of blocks in the warped and atlas template images at the
same location, we calculated intensity histograms for both blocks of the
pair and normalized the histogram range of the warped image block to
that of the atlas template image block. Again, the brain mask of the atlas
template image was used to exclude the voxels outside of the brain region
based on the intensity histogram calculation. We normalized the histogram
range instead of the histogram itself52 because the portion of tissues of
different types may change substantially among subjects, and normalizing
the histogram itself could lead to over-normalization. On the other hand,
the histogram range, the lower and upper bounds of which stand for the
intensities of CSF and white matter, respectively, is more stable.
For each block Bk , let uak and uwk be the upper bounds and lak and lwk be

the lower bounds of the intensity histogram of the block in the atlas
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template images Ia and the warped images Iw . We defined a linear
intensity transform for block Bk as follows:

�I
w
k ¼ uak � lak

uwk � lwk
Iwk � uak � lak

uwk � lwk
lwk þ lak � akI

w
k þ bk (3)

where IWk ; k ¼ 1; � � � ;N denotes the intensity of voxels in block k of the
warped images Iw , and �I

w
k is its normalized intensity.

To obtain a continuous intensity transform over the whole images, we
regarded Eq. (3) as the intensity transform at the gravity center of each
block Bk , that is, the gravity center of brain mask of block Bk , and then used
a kernel function to expand ak and bk , two parameters that represent the
intensity transform, to the whole image continuously. Using the gravity
center X

w
k of block Bk and its intensity transform parameters ak and bk , we

calculated two continuous parameter maps aw Xwð Þ and bw Xwð Þ of the
intensity transform using a kernel function, defined as follows:

pwðXwÞ ¼
XN
k¼1

pkG X; X
w
k

� �
=
Xn
k¼1

G X; X
w
k

� �
(4)

where p stands for parameters a or b and Xw stands for the 3D coordinate
of each voxel in the warped image Iw . GðX; XÞ is defined as

G X; X
� � ¼ exp � kX�Xk

2 s2xþs2yþs2zð Þ
� �

, where sx , sy , and sz are the block sizes. N

is the number of blocks. Using the parameter map, we can normalize
intensities in the warped image Iw voxel-wise.
As Eq. (4) was defined on the warped images Iw , to obtain the intensity

transform on the shape-normalized images In , we back-projected the
parameter map obtained on the warped images Iw to the shape-
normalized images In using the inverse of the B-spline transform obtained
in the nonlinear image registration.

pnðXnÞ ¼ pwðT�1
B Xn;φð ÞÞ (5)

where Xn stands for the 3D coordinate of each voxel in the shape-
normalized images In and p stands for parameters a or b. By applying the
back-projected intensity transform parameters to the shape-normalized
images In , we can obtain an intensity normalization.

Brain segment extraction
After the intensity normalization was carried out, a skull-stripping process was
performed on the shape-normalized images to extract the brain region. To
achieve this, we trained a V-net53 with four layers. The V-net was trained using
the same dataset as that used for the landmark detection. The ground truth of
the brain regions of the training data was obtained by manual editing under
the supervision of the radiological technologist. The segmentation results
were generated automatically by an image registration method, which further
included diffeomorphic image registration54 implemented in ITK.
From the normalized (in shape and intensity) and skull-tripped image, brain

segments of hippocampi (left and right) and anterior temporal lobes (left and
right) were extracted. The locations of these segments were identified in the
atlas template image manually and their sizes were fixed to 64 × 64 × 64
voxels, which was large enough to contain each segment of interest with a
necessary margin in the normalized image. For each sample, four brain
segments, which contained hippocampi and anterior temporal lobes, both left
and right, at the same locations specified in the atlas template images, were
extracted from its normalized image, respectively.

Image feature extraction
A densely connected convolutional network (DenseNet)55, which has
confirmed superiority over other network architectures for the same task
on a different dataset56, was adopted as the backbone of our architecture
for image feature extraction. As shown in Supplementary Fig. 4, in our
architecture, the DenseNet backbone was enhanced by adding an SA layer
and an AE to improve its stability on limited training samples.
Supplementary Table 8 shows the detailed architecture of our DenseNet

backbone, which is basically the same as DenseNet-12155, where the 2D
convolution and pooling layers were modified to 3D ones. The size of the
first convolution layer was also changed to a smaller one because of the
smaller size of the brain segment images.
Between the last dense block and the classification layer of the original

DenseNet-121, an SA layer was inserted. While DenseNet is a method used to
extract local relationships from images hierarchically, the SA highlights
important positions in a feature map and helps to extract a global
relationship. In our model, by adding an SA layer just after the DenseNet

backbone, we could extract features representing both the local and global
relationships.
Beside the classification task, in which an inputted brain segment was

classified to sMCI or pMCI classes, another task of the AE, which recovers
the imputed brain segment image from the image features, was added to
the DenseNet backbone. By introducing the AE task, which was considered
more robust than classification with a small number of samples, the
robustness of the entire architecture was expected to be improved. For the
decoder, we employed a simple five-layer network consisting of de-
convolution and up-sampling layers, the details of which are shown in
Supplementary Table 9.
To optimize the multi-task architecture, a mixed loss function of the two

tasks was defined as follows:

Loss ¼ 1� αð ÞLclass þ αLAE (6)

where Lclass represents the classification error function for prediction
defined by cross-entropy loss, LAE denotes the AE error function defined by
smooth L1 loss, and α is a hyper-parameter that controls the effect of the
AE, which is set to 0.8 empirically.
The two networks with the same architecture shown in Supplementary

Fig. 4 were trained for the brain segments of hippocampi and the anterior
temporal lobe independently. Because the left and right segments of brain
are basically symmetrical, images of the left hippocampus were flipped
horizontally and then used with images of the right hippocampus to train
the hippocampus network; this process was also applied to the anterior
temporal lobe segment. The output of the global average polling of the
trained network was extracted as image features and used with other non-
image features for final classification, as described below.
The intensity of all images for training and testing were normalized to [0, 1]

by a fixed maximum intensity of 400 in advance. Because the number of
samples was small, we also augmented the training images before they were
inputted to the network. The following augmentations were carried out for
each training image:

1. A similarity transform with random rotations ranged from −2.0 to
2.0 degrees, scaling factors from 0.95 to 1.05, and translation from
−4.0 to 4.0 voxels, around or along the x, y, and z axes, respectively.

2. A linear gray scale transform with a random slope from 0.95 to 1.05
and a random shift from −0.05 to 0.05, where the gray value of the
images was normalized to [0, 1].

To avoid the influence of the outside border generated by the random
similarity transform augmentation, the augmented images were cropped
into a 48 × 48 × 48 voxel size, and the cropped images were used as the
input for our network.

Linear SVM classification
Because the number of training samples is limited in the machine learning
field of AD progression prediction, we adopted a linear SVM instead of E2E
deep learning as the final predictor to improve generalizability. After a 128-
dimensional image feature was extracted from each brain segment by CNNs,
principal component analysis was used to reduce the dimension to 1 for each
segment. We also attempted to reduce the dimension to 2 or 3 for each brain
segment, but there were almost no changes in accuracy. Then, non-image
information, including cognitive scores (MMSE, FAQ, CDR, and ADAS), age,
and APOE type, was combined with the reduced image features of the four
segments as the SVM input. Here, we transformed APOE type to a value
representing AD risk based on the following rules:57 for ε2/ε3, value= 0.6; for
ε3/ε3, value= 1.0; for ε2/ε4 and ε4/ε2, value= 3.2; and for ε4/ε4, value= 11.6.
Because the distributions of these multimodal inputs differ greatly, quartile
normalization58 is used to normalize the combined features before the SVM is
applied. For validation and test, the same quartile normalization used for
training was applied to the combined features.

End-to-end (E2E) classification
We also implemented two E2E models using the same backbone
architecture shown in Supplementary Fig. 4; one uses only images for
prediction and the other uses both images and non-image information, as
shown in Supplementary Fig. 5. For the model that uses both image and
non-image information, bilinear fusion16 was used to combine the image
features extracted from images and non-image features extracted from
non-image information. The same AE as shown in Supplementary Fig. 4
was also adopted, but this was omitted because of space limitations. In the
architecture, two image feature extraction modules were configured in
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parallel to extract image features from the images of the hippocampi and
anterior temporal segments, and the extracted image features were
concatenated together. For the model using both image and non-image
information, the non-image features were first embedded and then
extended to the same dimension of the image features. Bilinear fusion was
then applied to the image features and extended non-image features to
generate the multimodal features for classification.
In our experiments, although the E2E model achieved high validation

accuracy, a relatively large decline in test accuracy (from 87% to 83%) was
observed. On the other hand, only a slight decline in test accuracy was seen
(from 89% to 88%) for our proposed architecture, which combined image and
non-image features with a linear SVM, while it achieved the highest validation
accuracy. This observation may imply that a simpler combination of
multimodal features may be more stable than an E2E deep learning approach
when the number of samples available is relatively small.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.

DATA AVAILABILITY
The data used for model training, validation, and test are publicly available at the
following URLs:
1 NA-ADNI dataset: http://adni.loni.usc.edu/.
2 J-ADNI dataset: https://humandbs.biosciencedbc.jp/en/hum0043-v1.

CODE AVAILABILITY
The DenseNet code, which was used as the backbone of our architecture, is available
at https://github.com/liuzhuang13/DenseNet. The Faster R-CNN code used for brain
landmark detection is available at https://github.com/rbgirshick/py-faster-rcnn. The
Insight Toolkit: ITK, on which our image registration algorithm was implemented, is
available at https://itk.org.
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